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ABSTRACT

In this Account we highlight the experimental evidence in favor of
our view that carbon nanotubes should be considered as a new
macromolecular form of carbon with unique properties and with
great potential for practical applications. We show that carbon
nanotubes may take on properties that are normally associated with
molecular species, such as solubility in organic solvents, solution-
based chemical transformations, chromatography, and spectros-
copy. Itis already clear that the nascent field of nanotube chemistry
will rival that of the fullerenes.

Introduction

Fullerenes were immediately recognized as a new molec-
ular form of carbon,'? even though they have produced
novel materials with itinerant properties.> Since their
inception,* carbon nanotubes have been regarded as
materials,® and most naturally related to the other intrac-
table carbon allotropes—graphite and diamond. It has
been the goal of our group to bring these fascinating one-
dimensional (1D) carbon structures into the fold of
(macro)molecular chemistry.® Recent work has shown that
with appropriate processing carbon nanotubes may take
on properties that are normally associated with molecular
species,’ such as solubility in organic solvents, solution-
based chemical transformations, chromatography, and
spectroscopy. In this Account we summarize the progress
and the promise of the new field of carbon nanotube
chemistry.

We focus on single-walled carbon nanotubes (SWNTSs)
which were first reported in 1993.8° The SWNTs are
characterized by strong covalent bonding, a unique one-
dimensional structure, and nanometer size which impart
unusual properties to the nanotubes—including excep-
tionally high tensile strength, high resilience, electronic
properties ranging from metallic to semiconducting, high
current carrying capacity, and high thermal conductivity.
Chemical processing of the SWNTs will play an essential
role in the realization of the promise of this material.

Preparation and Solid State Properties

When carbon is dissolved in a transition metal nanopar-
ticle melt, most commonly Ni/Co, Ni/Y, Rh/Pt, or Fe, and
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FIGURE 1. Scanning electron micrograph of SWNT soot prepared
by the arc process with NifY catalyst: (a) typical purity, (b) high
purity region of the same sample. (Reproduced with permission from
Carbon Solutions, Inc. Copyright 2000.)

allowed to supersaturate,'®!! a cylindrical graphitic carbon
network is extruded. This structure can grow in the form
of a cylinder to a length of micrometers in a few milli-
seconds,%1?2 and it is thought that such structures can
grow indefinitely provided the correct phase properties
for the particular metal—carbon alloy are maintained.3-18
The SWNTSs thus formed have diameters on the order of
a nanometer when prepared by current techniques.?*~2!
Typically, the as-prepared SWNT soot (AP-SWNTSs) from
the electric arc procedure contains metal particles, metal
clusters coated with carbon, amorphous carbon, and in
some cases fullerenes, with a 30 wt % abundance of
carbon nanotube ropes (Figure 1).

Ultra-high-vacuum (UHV) scanning tunneling micros-
copy (STM) has allowed atomic resolution imaging of the
surface of SWNTs, and I/V spectroscopy has provided
direct measurement of the electronic band structure.??=2
It is now known that SWNTs can behave as metals,
semiconductors, or small band-gap semiconductors,?6-28
depending upon their diameter and chirality.?® Electronic
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FIGURE 2. Electronic transitions between the energy bands of
SWNTs, observed by transmission spectroscopy of films, together
with a schematic of the nomenclature used to designate the
interband transitions.*

transitions between the energy bands of SWNTs (Figure
2) can be observed by standard spectroscopic tech-
niques.”?"% Besides the heterogeneity of the samples with
respect to the tube diameters and helicities, impurity
doping contributes to the breadth of the absorption
features.?” Since the band gaps are inversely proportional
to the tube diameters, structural information can be
derived from the band transition energies.®!
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Electronic Structure and Chemical Reactivity

The reactivity of the fullerenes is primarily driven by the
enormous strain engendered by their spherical geometry
as reflected in the pyramidalization angles of the carbon
atoms.® For an sp?-hybridized (trigonal) carbon atom,
planarity is strongly preferred, and this implies a pyra-
midalization angle of 6 = 0°, whereas an sp3-hybridized
(tetrahedral) carbon atom requires 6p = 19.5° (Figure 3b).
All of the carbon atoms in Cg have 6p = 11.6°, and it is
immediately clear that their geometry is more appropriate
for tetrahedral than trigonal hybridization. Thus the
chemical conversion of any trivalent carbon atom in Cg
to a tetravalent carbon atom relieves the strain at the point
of attachment and mitigates the strain at the 59 remaining
carbon atoms.®? Hence reactions that serve to saturate the
carbon atoms are accelerated by strain relief, and this
strongly favors fullerene addition chemistry.32-34

Just as in the case of a fullerene, a perfect SWNT is
without functional groups; therefore these quasi-1D cy-
lindrical aromatic macromolecules are chemically inert.
However, curvature-induced pyramidalization and mis-
alignment of the z-orbitals®303235-41 of the carbon atoms
induces a local strain (Figure 3), and carbon nanotubes
are expected to be more reactive than a flat graphene
sheet. From the standpoint of the chemistry, it is con-
ceptually useful to divide the carbon nanotubes into two
regions: the end caps and the side wall. The end caps of
the carbon nanotubes resemble a hemispherical fullerene,
and because it is impossible to reduce the maximum

FIGURE 3. Diagrams of (a) metallic (55) SWNT, (b) pyramidalization angle (6p), and (c) the s-orbital misalignment angles (¢) along the

C1—C4 in the (5,5) SWNT and its capping fullerene, Cg.
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pyramidalization angle of any fullerene below about 6pm&
= 9.7°,*2 this ensures that the end caps will always be quite
reactive, irrespective of the diameter of the carbon nano-
tube. In the (5,5) SWNT shown in Figure 3a, which is
capped by a hemisphere of Cgq, the pyramidalization
angles are as follows: 6p ~ 11.6° (end cap) and 6p ~ 6.0°
(side wall).0

The strain in nonplanar conjugated organic molecules
arises from two principal sources: pyramidalization of the
conjugated carbon atoms, and sz-orbital misalignment
between adjacent pairs of conjugated carbon atoms.3%43
The strain in the fullerenes is primarily from pyramidal-
ization,**“% and the large strain imposed by the spheroidal
structure accounts for their well-developed (addition)
chemistry.32734 It is the relief of this strain which ac-
companies addition reactions that drives the chemistry
of the fullerenes.®? There is very little z-orbital misalign-
ment in the fullerenes, and in the case of Cgq the z-orbital
alignment is perfect.*4*6 This is why the pyramidalization
angle (alone) provides a useful index of local reactivity in
the fullerenes.®? Clearly the fullerene double bonds that
are terminated with carbon atoms of maximum pyrami-
dalization angle (6p™®) will be the most reactive;*? this
index allows comparisons in reactivity between the carbon
atoms in a given fullerene (such as C,0)% and between
different fullerenes in terms of the maximum pyramidal-
ization angle which is characteristic of any structure. For
example, among those fullerenes with icosahedral sym-
metry, the fullerene with the minimum 6™ value is Cs4,
and thus this molecule is expected to be the most
chemically inert of the icosahedral (and perhaps all)
fullerenes.*? Because the isolable fullerenes obey the
isolated pentagon rule,**8 the carbon atom(s) of maxi-
mum pyramidalization in any fullerene always lie in a five-
membered ring (5—6—6 ring junction), and it appears
likely that for all fullerenes, 6™ > 9.7°.4?

Although the carbon fullerenes and the side walls of
the carbon nanotubes are both examples of curved
carbon,* there are significant structural differences which
are expected to be reflected in their chemistry; in par-
ticular, the fullerenes are curved in 2D, whereas the
nanotubes are curved in 1D. Thus for a curved carbon
structure of given radius, the carbon atoms in a fullerene
are more distorted than those in the corresponding carbon
nanotube. For example, to curve a graphene sheet into a
(10,10) SWNT requires a pyramidalization angle for the
carbon atoms of about 0, = 3.0°,° whereas the fullerene
of equivalent radius, Cy4 [a (10,10) SWNT can be capped
by a hemisphere of Cy40],'° has 6™ = 9.7°:%? see also the
(5,5) SWNT discussed above. The strain energy of pyra-
midalization®248 is roughly proportional to 6p?, so the
fullerene must absorb about 10 times the strain energy of
pyramidalization per carbon atom, compared to the
“equivalent” carbon nanotube at these diameters.

However, there is a caveat to this analysis—whereas the
s-orbital alignment in the fullerenes is almost perfect,*4°
this is not the case for all bonds in the carbon nanotubes.
This may be seen in the illustration of an arm-chair (5,5)
SWNT shown in Figure 3 (pyramidalization angle, 6p =

Table 1. Pyramidalization (6r) and #-Orbital
Misalignment Angles (¢) in (n,m) SWNT

diameter 0p ¢ diameter 6p ¢
nm (nm) (deg) (deg) nm  (nm) (deg) (deg)
10,0 781 515 0,185 55 6.76 597 0,213
12,0 9.37 430 0,153 6,6 811 499 0,17.6
14,0 10.93 3.69 0,13.1 7,7 9.47 427 0,15.0

16,0 12.49 324 0,114 8,8 10.82 3.74 0,13.1
18,0 1405 2.88 0,10.1 9,9 12.17 3.33 0,116
20,0 1561 2.59 0,09.1 10,10 13,52 3.00 0,104

6.0°).2° Although all carbon atoms are equivalent, there
are two types of bonds: those that run parallel to the
circumference (or perpendicular to the nanotube axis) and
those at an angle to the circumference with s-orbital
misalignment angles (¢, deg) of ¢ = 0° and 21.3°, respec-
tively. The analogous values for the (10,10) SWNT are
¢ = 0° and 10.4°. On the basis of previous calculations of
torsional strain energies in conjugated organic mol-
ecules,® z-orbital misalignment is likely to be the main
source of strain in the carbon nanotubes. This represents
a clear contrast with fullerene chemistry, although there
are parallels with the reactivity of homofullerenes (fulle-
roids).%3° Just as in the case of the fullerenes, the reactivity
of carbon nanotubes arises out of their topology but for
different reasons. Furthermore, since the pyramidalization
angles and the sw-orbital misalignment angles of SWNTs
scale inversely with the diameter of the tubes, a dif-
ferentiation is expected between the reactivity of carbon
nanotubes of different diameters (Table 1).

Maintaining the basic electronic structure of the SWNTs
while exploiting the reactivity to bring about appropriate
chemical processing and modification remains the central
dilemma of the field.®* The aromatic ring system of the
SWNTs can be disrupted by the application of extremely
aggressive reagents. When sonicated® in the presence of
strong oxidizing agents such as HNO; or H,SO, or a
mixture of the two,>2 the nanotubes can be functionalized
as carboxylic acids or quinones,>~% whereas sonication
in organic solvents produces dangling bonds in the SWNTs
that undergo further chemical reactions.>” As expected
from the foregoing discussion, the oxidative power neces-
sary to incorporate acidic sites into carbon nanotubes
varies with the tube diameter. While the largest diameter
tubes (made in the electric arc process) require the most
strongly oxidative conditions, the smaller diameter HiPco
tubes do not survive such harsh treatment.585°

The preceding discussion has focused on the local
electronic structure, but from the time of their discovery,?°
it has been recognized that SWNTs possess a unique
electronic band structure (Figure 2). Depending on helicity
and diameter, these 1D nanostructures may be metals or
semiconductors.?®69-62 The electronic structure of the
SWNTs is related to a 2D graphene sheet, but, because of
the radial confinement of the wave function, the continu-
ous electronic density of states (DOS) in graphite divides
into a series of spikes in SWNTs which are referred to as
Van Hove singularities. Electronic transitions between
these singularities give rise to prominent features in
scanning tunneling spectroscopy (STS)?2%3 and transmis-
sion spectroscopy.”17:3163 As can be seen in Figure 2, the
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FIGURE 4. Fermi level electronic structure of common forms of
SWNTs. The low energy (~0.01 eV) features arise from a combina-
tion of (1) transitions that are intrinsic to the metallic SWNTs, (2)
transitions due to the curvature-induced gap (M) in the chiral
metallic SWNTSs, and (3) transitions due to purification-induced acid
doping of the semiconducting SWNTs.2

commercially available SWNT preparations readily allow
the observation of the first and second electronic transi-
tions in the semiconducting nanotubes (S;; and S,,) and
the first transition in the metallic nanotubes (My).%° In
addition, transitions at the Fermi level (Figure 4) of the
metallic SWNTs (Mgo) are observable in the far-IR region
of the electromagnetic spectrum.?%?” This is the most
informative region of the spectrum, and in the case of
acid-purified SWNTs we have shown that the low-energy
feature is partially due to doping of the SWNTSs, presum-
ably by nitric acid. Furthermore, the peak at ~0.01 eV may
be assigned to the curvature-induced pseudogap in the
chiral
SWNTs.64-66

On a practical note, an important aspect of nanotube
chemistry is the level of purity of the starting materials,
and most bulk samples are heavily contaminated with
non-nanotube impurities. No chemist likes to work with
impure starting materials, but this is the usual state of
affairs at the present time. The absence of analytically pure
bulk samples of carbon nanotubes has been the most
important factor in hampering the investigation of their
chemistry and characterization of their intrinsic proper-
ties.5358.67-69 It should be noted that most current tech-
niques do not begin to address the purification of carbon
nanotubes by length, diameter, and chirality, although this
will clearly be of great future importance.” 72

Dissolution

Chemistry occurs in solution. Modern synthetic chemistry
and biological processes primarily take place in the
solution phase. Although we attempted chemistry on as-
prepared SWNTs (AP-SWNTSs) (Scheme 1), the difficulties
associated with characterizing the products® forced us to
turn our attention to the development of a dissolution
process for the SWNTs. SWNTSs are extremely resistant to
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Scheme 1. Reactions of AP-SWNTs®
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wetting.” They typically exist as ropes or bundles 10—25
nm in diameter that are a few micrometers long; the
SWNT ropes are entangled together in the solid state to
form a highly dense, complex network structure. These
factors, coupled with the fact that these pseudo-1D
graphitic cylinders do not have any surface functional
groups, make them very difficult to disperse in organic
media.b

It is possible to wet the SWNT raw soot in refluxing
nitric acid,>% whereby the end caps of the tubes are
oxidized to carboxylic acid and other weakly acidic func-
tionalities.®®747> These “acid-purified” SWNTs can be
dispersed in various amide-type organic solvents under
the influence of an ultrasonic force field.”® The nitric acid
purifies the carbon nanotubes by removal of some of the
metal catalysts used in the synthesis of the tubes and some
of the amorphous carbon that is a byproduct of most
synthetic methods. However, the nitric acid treatment
introduces defects on the nanotube surface,%? oxidizes
(hole dopes) the carbon nanotubes, and produces impu-
rity states (Figure 4) at the Fermi level of the nanotubes.?’
This latter effect may be viewed as an intercalation of the
nanotube lattice by oxidizing agents, with concomitant
effects on the electronic properties of the nanotubes,” 78
a process which is quite familiar from the intercalation
of graphite and fullerene lattices by various redox reagents.
The defect sites that are introduced into the carbon
nanotubes can be used to shorten and eventually destroy
the carbon nanotubes under similar oxidizing condi-
tions.%579782 The shortened tubes (s-SWNTSs) are better
solvated by amide solvents than are the full-length SWNTSs.

We envisioned that the addition of a long-chain
hydrocarbon at the ends of the shortened (100—300 nm)
carbon nanotubes® might render the functionalized SWNTs
soluble in organic solvents. Thus we set out to convert
the acid functionality in the s-SWNTs to the amide of
octadecylamine (ODA, Scheme 2), and this led to the first
shortened soluble SWNTSs (s-s-SWNTSs).” The formation of
the amide bond can be monitored using mid-IR spectros-
copy, and the SWNTs exhibit a number of clear spectro-
scopic signatures that suggest the material is in solution.
Direct reaction of the acid-purified s-SWNTs with long-
chain amines led to soluble materials by the formation of
zwitterions (Scheme 3).83
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Scheme 2. Covalent Chemistry at the Open Ends of s-SWNTs783.115
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Some insight into the mechanism of dissolution was
obtained by functionalization with 4-tetradecylaniline and
with aniline (Scheme 2). While the tetradecylaniline
functionalization yielded s-s-SWNTSs soluble in THF, CS,,
and aromatic solvents, the aniline derivatives were ap-
preciably soluble only in aniline.® It may thus be inferred
that the long-chain hydrocarbon plays an important role
in disrupting and compensating for the loss of the van
der Waals attraction between the carbon nanotubes.

Full-length SWNTs (I-SWNTSs) are the ideal material for
composites and nanoscale conductors. Thus we sought a
dissolution process for unshortened, full-length SWNTSs,
and this was accomplished by direct reaction of the
SWNT-COOH with octadecylamine (s-I-SWNT, Scheme
3).8384 Jonic functionalization has the following advan-
tages:” (1) The acid—base reaction represents the simplest
possible route to soluble SWNTs and can be readily
scaled-up at low cost. (2) Unlike the covalent amide bond,
the cation (*NH;3(CHy);:7CH3) in the ionic bond of SWNT—
COO~ "NH3(CH,)17,CH3 can be readily exchanged by other
organic and inorganic cations. Furthermore, such an ionic
feature may allow electrostatic interactions between SWNTs
and biological molecules and can serve as the basis for
developing biocompatible SWNTSs.

Since our initial work, the protocol of adding a bulky
side chain to the SWNT ends via amide or ester bond
formation (Scheme 4) has been applied by other
groups,?~%2 thus establishing the generality of the process.

Scheme 4. Carboxylic Acid Derivatization Protocol
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As noted above, the chemistry of the carbon nanotubes
is conveniently divided into two parts: the end caps and
the side wall. In our approach, the end caps are first
removed and then the open ends of the nanotubes
functionalized, perhaps together with functionalization of
defects and associated carbons. Nevertheless, a primary
goal of our work was the preservation of the essential
aspects of the carbon nanotube electronic structure.®” The
alternative method (Scheme 5) to functionalization makes
use of side wall chemistry®®—°7 with concomitant loss of
the carbon nanotube conjugated electronic structure in
order to render the SWNTSs soluble.®~97

The dissolution methods discussed above make use of
ionic or covalent functionalization of the carbon nano-
tubes. Noncovalent functionalization has also been shown
to be effective in the dissolution of the carbon nano-
tubes,®% together with polymer wrapping procedures.1%-102

Covalent Chemistry of the Walls of the Carbon
Nanotubes

As noted above, in certain instances covalent chemistry
on the walls of the SWNTSs is a viable route to soluble
material.®>~%" In fact, the ability to carry out controlled
(covalent) chemistry on the side walls of the SWNTs is a
very important step, and the achievement of a systematic
and predictable side wall chemistry is likely to be a
precursor to many of the applications that are currently
envisioned for carbon nanotubes.® We achieved the first
covalent side wall chemistry of SWNTSs (Scheme 1) when
we exposed these solids to a series of aggressive reagents,®
but it was not until we employed carbene reactions on
the s-s-SWNTs using phenyl(bromodichloromethyl)mer-
cury in toluene that we were able to demonstrate the
expected modification of the band electronic structure of
the SWNTSs.” Characterization of the functionalized species
is a major difficulty in carbon nanotube chemistry, but
in the case of wall chemistry, where the band electronic
structure is disrupted, solution spectroscopy is a powerful
tool; Raman spectroscopy has also been used to study the
effects of sidewall functionalization.®*~%1%° Dichlorocar-
bene is an electrophilic reagent that will add to deactivated
double bonds (Scheme 5)1%371% and to fullerenes.!06:107
Electronic spectroscopy showed that the band-gap transi-
tions in the semiconducting tubes were completely dis-
rupted at a functionalization level of 2% of the available
SWNT carbon atoms.” Apart from the carbene chemis-
try,87% a number of other chemical processes have been
demonstrated on carbon nanotubes (Scheme 5), including
nitrene addition,”*® hydrogenation via the Birch reduc-
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Scheme 5. Side Wall Chemistry on SWNTs9-95,97.109.110
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While the side walls of the carbon nanotubes were once
considered impregnable (like the fullerenes),®?3 there is
now an extensive chemistry,”9394997.110 and these initial
studies suggest that the chemistry of the carbon nano-
tubes will ultimately rival that of the carbon fullerenes.

nucleophilic substitution

lonic Chemistry (Doping)

As noted above, oxidative doping during nitric acid
purification exerts a noticeable effect on the electronic
transitions seen in the SWNTs (Figure 4). Similar effects
may be observed by doping solutions of the nanotubes
with halogens.”82 Under saturation doping,” bromine and
iodine completely deplete the electrons from the valence
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FIGURE 5. Change in the interband transitions of s-s-SWNTs after
chemical doping with iodine and bromine.”

band responsible for the S;; transition in the semicon-
ducting nanotubes, and both reagents also affect the Sy,
transition (Figure 5). Similar results were obtained under
electrochemical cycling® and by controlled doping of thin
films of carbon nanotubes.*112 Furthermore, solid state
doping with halogens has been shown to influence the
conductivity and Raman spectra of SWNTs.113114

Conclusion

Remarkable progress has been made in carbon nanotube
chemistry—a field that did not exist five years ago and that
was not expected to be possible. Clearly much remains
to be accomplished: carbon nanotubes must be made at
lower cost and in much improved purity. The heteroge-
neous bundling of the metallic and semiconducting
carbon nanotubes is an additional problem that must be
circumvented in order to realize the full nanotechnological
potential of SWNTSs. Nevertheless, with further develop-
ments in chemical processing the unique materials prop-
erties of the carbon nanotubes stand poised to revolu-
tionize a number of important industries, from biology
and medicine to aerospace and electronics.
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